7. Three Dimensional Geometric and Modeling Transformations

Contents

7.1 Translation
7.2 Rotation
7.3 Scaling
7.4 Reflection
7.5 Shear
7.6 Composite transformation

Introduction

$>$ It is very similar to 2D. It uses 4×4 matrices rather than 3×3.
$\rightarrow A$ 3D point P is represented in homogeneous coordinates by a 4-dimensional vector

7.1 Translation

- A translation moves all points in an object along the same straight line path to new positions.
- The path is represented by a vector, called the translation or shift vector.

We can write the components as

Translation

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y} \\
& z^{\prime}=z+t_{z}
\end{aligned}
$$

7.2 Rotation

> For 3D object rotation transformation we need to pick an axis to rotate about and the amount of angular rotation.
> 3D rotation can be specified around any line in space

The most common choices are the X -axis, the Y -axis, and the Z -axis.

Rotation about Z-axis

Rotation about z axis in Three-dimensional

Z-axis rotation is identical to the 2D case:
$x^{\prime}=x \cos \theta-y \sin \theta$
$y^{\prime}=x \sin \theta+y \cos \theta$
$z^{\prime}=z$
The parameter θ is specifies the rotation angle. In homogeneous coordinate form ,the 3D z-axis rotation equations are expressed as

$$
\left[x^{\prime}, y^{\prime}, z^{\prime}, 1\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

We can write more compactly as
$P^{\prime}=R_{z}(\theta) . P$
Transformation equations for rotation about the other two coordinate axes can be obtained with a cyclic permutation of the coordinate parameters x, y and z in the above equation. That is we use the replacements
$x \rightarrow y \rightarrow z \rightarrow x$

Rotation about X - axis

X-axis rotation looks like Z-axis rotation if replace: X axis with Y axis , Y axis with Z axis Z axis with X axis.So we do the same replacement in the equations:

Same argument as for rotation about z axis For rotation about x axis, x is unchanged

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y \cos \theta-z \sin \theta \\
& z^{\prime}=y \sin \theta+z \cos \theta
\end{aligned}
$$

$\left[x^{\prime}, y^{\prime}, z^{\prime}, 1\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$
$P^{\prime}=R_{x}(\theta) . P$

Rotation about y axis

> Y -axis rotation looks like Z -axis rotation if replace: X axis with Z axis, Y axis with X axis ,Z axis with Y axis. So we do the same replacement in equations:
$>$ Same argument as for rotation about z axis
$>$ For rotation about y axis, y is unchanged

$$
\begin{aligned}
& x^{\prime}=x \cos \theta+z \sin \theta \\
& y^{\prime}=y \\
& z^{\prime}=z \cos \theta-x \sin \theta
\end{aligned}
$$

7.3 Scaling

$>$ Scaling changes the size of an object and involves the scale factors.
$>$ The scaling parameters $\mathrm{S}_{\mathrm{x}}, \mathrm{S}_{\mathrm{y}}$ and S_{z} are assigned any positive values.
> Scales the object about the origin, Here changes the size of the object along x, y and z coordinate is same

The object before scaling

Object after scaling

Enlarging object also moves it from origin

$$
\begin{aligned}
x^{\prime} & =S_{x} \cdot x \\
y^{\prime} & =S_{y} \cdot y \\
z^{\prime} & =S_{z} \cdot z
\end{aligned} \quad \begin{aligned}
& \mathbf{P}^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
\mathbf{O} & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{S} \cdot \mathbf{P}
\end{aligned}
$$

7.4 Reflections

> A Three-dimensional can be performed relative to a selected reflection axes or with respect to selected reflected plane.
> Three-dimensional reflection matrices are set up similar to those for two dimensional.
$>$ Reflection relative to given axis are equivalent to 180° rotation about that axis.
> The reflection planes are either $x y, x z$ or $y z$
> The matrix expression for the reflection transformation of a position $\mathrm{P}=(x, y, z)$ relative to $x y$ plane can be written as:

$$
R F_{z}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Transformation matrices for inverting x and y values are defined similarly, as reflections relative to $y z$ plane and $x z$ plane, respectively

7.5 Shears

The matrix expression for the shearing transformation of a position $\mathrm{P}=(x, y, z)$, to produce z axis shear, can be written as:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & a & 0 \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Parameters a and b can be assigned any real values. The effect of this transformation is to alter x - and y-coordinate values by an amount that is proportional to the z value, while leaving the z coordinate unchanged.
- Shearing transformations for the x axis and y axis are defined similarly.

7.6 Composite transformation

$>$ We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
$>$ Because the same transformation is applied to many vertices, the cost of forming a matrix $\mathrm{M}=\mathrm{ABCD}$ is not significant compared to the cost of computing Mp for many vertices p
$>$ The difficult part is how to form a desired transformation from the specifications in the application
> Consider the composite transformation matrix $\mathbf{M}=\mathbf{A B C}$
$>$ When we calculate Mp, matrix C is the first applied, then B, then A
$>$ Mathematically, the following are equivalent

$$
p^{\prime}=A B C p=A(B(C p))
$$

$>$ Hence composition order really matters.

Rotation About Point P

- Move fixed point P to origin
- Rotate by desired angle
- Move fixed point P back
- $M=T\left(p_{f}\right) R(q) T\left(-p_{f}\right)$

